Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Biomed Eng Lett ; 14(3): 439-450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645594

RESUMEN

Purpose: Transscleral ocular iontophoresis has been proposed to deliver charged particulate drugs to ocular tissues effectively by transmitting a weak electrical current through the sclera. The electric fields formed are influenced by the electrode conditions, thus affecting the amount of particulate drugs delivered to the ocular tissues via iontophoresis. Computational simulation is widely used to simulate drug concentrations in the eye; therefore, reflecting the characteristics of the drugs in living tissues to the simulations is important for a more precise estimation of drug concentration. In this study, we investigated the effect of electrode conditions (location and size) on the efficacy of transscleral iontophoresis. Methods: We first determined the simulation parameters based on the comparison of the amount of drug in the sclera in the simulation and in vivo experimental results. The injection of the negatively charged nanoparticles into the cul-de-sac of the lower eyelid was simulated. The active electrode (cathode) was attached to the skin immediately above the injection site, while the return electrode (anode) was placed over the eyebrow. The drug concentration distribution in the eye, based on either the location or size of each electrode, was evaluated using the finite element method with the estimated simulation parameters. Results: Our results indicate that drug permeability varies depending on the location and the size of the electrodes. Conclusion: Our findings demonstrate that the determination of optimal electrode conditions is necessary to enhance the effectiveness of transscleral iontophoresis. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00359-2.

2.
Clin Psychopharmacol Neurosci ; 22(1): 53-66, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38247412

RESUMEN

Objective: : Alpha wave of electroencephalography (EEG) is known to be related to behavioral inhibition. Both the alpha wave and default mode network (DMN) are predominantly activated during resting-state. To study the mechanisms of the trait inhibition, this research investigating the relations among alpha wave, DMN and behavioral inhibition in resting-state. Methods: : We explored the relationship among behavioral inhibition, resting-state alpha power, and DMN. Resting-state EEG, behavioral inhibition/behavioral activation scale (BIS/BAS), Barratt impulsivity scale, and no-go accuracy were assessed in 104 healthy individuals. Three groups (i.e., participants with low/middle/high band power) were formed based on the relative power of each total-alpha, low-alpha (LA), and high-alpha band. Source-reconstructed EEG and functional network measures of 25 DMN regions were calculated. Results: : Significant differences and correlations were found based on LA band power alone. The high LA group had significantly greater BIS, clustering coefficient, efficiency, and strength, and significantly lower path length than low/middle LA group. BIS score showed a significant correlation with functional network measures of DMN. Conclusion: : Our study revealed that LA power is related to behavioral inhibition and functional network measures of DMN of LA band appear to represent significant inhibitory function.

3.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257638

RESUMEN

Controlling the in-car environment, including temperature and ventilation, is necessary for a comfortable driving experience. However, it often distracts the driver's attention, potentially causing critical car accidents. In the present study, we implemented an in-car environment control system utilizing a brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). In the experiment, four visual stimuli were displayed on a laboratory-made head-up display (HUD). This allowed the participants to control the in-car environment by simply staring at a target visual stimulus, i.e., without pressing a button or averting their eyes from the front. The driving performances in two realistic driving tests-obstacle avoidance and car-following tests-were then compared between the manual control condition and SSVEP-BCI control condition using a driving simulator. In the obstacle avoidance driving test, where participants needed to stop the car when obstacles suddenly appeared, the participants showed significantly shorter response time (1.42 ± 0.26 s) in the SSVEP-BCI control condition than in the manual control condition (1.79 ± 0.27 s). No-response rate, defined as the ratio of obstacles that the participants did not react to, was also significantly lower in the SSVEP-BCI control condition (4.6 ± 14.7%) than in the manual control condition (20.5 ± 25.2%). In the car-following driving test, where the participants were instructed to follow a preceding car that runs at a sinusoidally changing speed, the participants showed significantly lower speed difference with the preceding car in the SSVEP-BCI control condition (15.65 ± 7.04 km/h) than in the manual control condition (19.54 ± 11.51 km/h). The in-car environment control system using SSVEP-based BCI showed a possibility that might contribute to safer driving by keeping the driver's focus on the front and thereby enhancing the overall driving performance.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Automóviles , Potenciales Evocados Visuales , Ojo , Laboratorios
4.
Adv Sci (Weinh) ; 11(7): e2305871, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087936

RESUMEN

Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR-integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all-in-one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real-time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi-channel soft wearable system offers an enhanced signal-to-noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR-integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human-machine interface opportunities for users to interact remotely with external hardware and software.


Asunto(s)
Realidad Aumentada , Dispositivos Electrónicos Vestibles , Humanos , Piel , Electrónica , Electrodos
5.
Brain Stimul ; 16(5): 1377-1383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37716638

RESUMEN

BACKGROUND: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. OBJECTIVE: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. METHODS: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 µA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. RESULTS: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 µA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 µA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. CONCLUSIONS: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain.


Asunto(s)
Estimulación Encefálica Profunda , Dopamina , Neostriado , Estimulación Eléctrica , Encéfalo
6.
Behav Brain Funct ; 19(1): 13, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620941

RESUMEN

BACKGROUND: Cross-frequency phase-amplitude coupling (PAC) of cortical oscillations is observed within and across cortical regions during higher-order cognitive processes. Particularly, the PAC of alpha and gamma waves in the occipital cortex is closely associated with visual perception. In theory, gamma oscillation is a neuronal representation of visual stimuli, which drives the duty cycle of visual perception together with alpha oscillation. Therefore, it is believed that the timing of entrainment in alpha-gamma PAC may play a critical role in the performance of visual perception. We hypothesized that transcranial alternating current stimulation (tACS) with gamma waves entrained at the troughs of alpha waves would enhance the dynamic visual acuity (DVA). METHOD: We attempted to modulate the performance of DVA by using tACS. The waveforms of the tACS were tailored to target PAC over the occipital cortex. The waveforms contained gamma (80 Hz) waves oscillating at either the peaks or troughs of alpha (10 Hz) waves. Participants performed computerized DVA task before, immediately after, and 10 min after each stimulation sessions. EEG and EOG were recorded during the DVA task to assess inter-trial phase coherence (ITPC), the alpha-gamma PAC at occipital site and the eye movements. RESULTS: tACS with gamma waves entrained at alpha troughs effectively enhanced DVA, while the tACS with gamma waves entrained at alpha peaks did not affect DVA performance. Importantly, analyses of EEG and EOG showed that the enhancement of DVA performance originated solely from the neuromodulatory effects, and was not related to the modulation of saccadic eye movements. Consequently, DVA, one of the higher-order cognitive abilities, was successfully modulated using tACS with a tailored waveform. CONCLUSIONS: Our experimental results demonstrated that DVA performances were enhanced when tACS with gamma bursts entrained on alpha wave troughs were applied over the occipital cortex. Our findings suggest that using tACS with tailored waveforms, modulation of complex neuronal features could effectively enhance higher-order cognitive abilities such as DVA, which has never been modulated with conventional noninvasive brain stimulation methods.


Asunto(s)
Procedimientos Quirúrgicos Refractivos , Estimulación Transcraneal de Corriente Directa , Humanos , Agudeza Visual , Percepción Visual , Movimientos Oculares
7.
Sci Rep ; 13(1): 12710, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543713

RESUMEN

While zero-phase lag synchronization between multiple brain regions has been widely observed, relatively recent reports indicate that systematic phase delays between cortical regions reflect the direction of communications between cortical regions. For example, it has been suggested that a non-zero phase delay of electroencephalography (EEG) signals at the gamma frequency band between the bilateral parietal areas may reflect the direction of communication between these areas. We hypothesized that the direction of communication between distant brain areas might be modulated by multi-site transcranial alternating current stimulation (tACS) with specific phase delays other than 0° and 180°. In this study, a new noninvasive brain stimulation (NIBS) method called multi-site multi-phase tACS (msmp-tACS) was proposed. The efficacy of the proposed method was tested in a case study using a visuospatial working memory (VWM) paradigm in which the optimal stimulation conditions including amplitudes and phases of multiple scalp electrodes were determined using finite element analysis adopting phasor representation. msmp-tACS was applied over the bilateral intraparietal sulci (IPS) and showed that 80 Hz tACS with the phase for the right IPS leading that for the left IPS by 90° (= 3.125 ms) partialized VWM performance toward the right visual hemifield. The three stimulation conditions were synchronized, RL, and LR, which refers to stimulation condition with no phase lag, stimulation phase of right IPS (rIPS) leading left IPS (lIPS) by 90° and the stimulation of lIPS leading rIPS by 90°, respectively. The lateralization of VWM significantly shifted towards right visual hemifield under the RL condition compared to the synchronized and LR conditions. The shift in VWM was the result of the stimulation affecting both left and right visual hemifield trials to certain degrees, rather than significantly increasing or decreasing VWM capacity of a specific visual hemifield. Altered brain dynamics caused by msmp-tACS partialized VWM performance, likely due to modulation of effective connectivity between the rIPS and lIPS. Our results suggest that msmp-tACS is a promising NBS method that can effectively modulate cortical networks that cannot be readily modulated with conventional multi-site stimulation methods.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/métodos , Lóbulo Parietal/fisiología , Electroencefalografía , Cognición
8.
Biomed Eng Lett ; 13(3): 465-473, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37519877

RESUMEN

The rapid expansion of virtual reality (VR) and augmented reality (AR) into various applications has increased the demand for hands-free input interfaces when traditional control methods are inapplicable (e.g., for paralyzed individuals who cannot move their hands). Facial electromyogram (fEMG), bioelectric signals generated from facial muscles, could solve this problem. Discriminating facial gestures using fEMG is possible because fEMG signals vary with these gestures. Thus, these signals can be used to generate discrete hands-free control commands. This study implemented an fEMG-based facial gesture recognition system for generating discrete commands to control an AR or VR environment. The fEMG signals around the eyes were recorded, assuming that the fEMG electrodes were embedded into the VR head-mounted display (HMD). Sixteen discrete facial gestures were classified using linear discriminant analysis (LDA) with Riemannian geometry features. Because the fEMG electrodes were far from the facial muscles associated with the facial gestures, some similar facial gestures were indistinguishable from each other. Therefore, this study determined the best facial gesture combinations with the highest classification accuracy for 3-15 commands. An analysis of the fEMG data acquired from 15 participants showed that the optimal facial gesture combinations increased the accuracy by 4.7%p compared with randomly selected facial gesture combinations. Moreover, this study is the first to investigate the feasibility of implementing a subject-independent facial gesture recognition system that does not require individual user training sessions. Lastly, our online hands-free control system was successfully applied to a media player to demonstrate the applicability of the proposed system. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00277-9.

10.
Schizophrenia (Heidelb) ; 9(1): 46, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500637

RESUMEN

Decreased 40-Hz auditory steady-state response (ASSR) is believed to reflect abnormal gamma oscillation in patients with schizophrenia (SZ). However, previous studies have reported conflicting results due to variations in inter-stimulus interval (ISI) used. In this study, we aimed to investigate the influence of varying ISI on the 40-Hz ASSR, particularly for patients with SZ and healthy controls (HCs). Twenty-four SZ patients (aged 40.8 ± 13.9 years, male: n = 11) and 21 HCs (aged 33.3 ± 11.3 years, male: n = 8) were recruited. For every participant, 40-Hz ASSRs were acquired for three different stimulus types: 500, 2000, and 3500 ms of ISIs. Two conventional ASSR measures (total power and inter-trial coherence, ITC) were calculated. Several additional ASSR measures were also analyzed: (i) ISI-dependent power; (ii) power onset slope; (iii) power centroid latency; (iv) ISI-dependent ITC; (v) ITC onset slope (500, 2000, 3500 ms); (vi) ITC centroid latency (500, 2000, 3500 ms). As ISI increased, total power and ITC increased in patients with SZ but decreased in HCs. In addition, patients with SZ showed higher ISI-dependent ITC, which was positively correlated with the psychotic symptom severity. The abnormal ITC onset slope and centroid latency for the ISI-500 ms condition were associated with cognitive speed decline in patients with SZ. Our study confirmed that the 40-Hz ASSR could be severely influenced by ISI. Furthermore, our results showed that the additional ASSR measures (ISI-dependent ITC, ITC onset slope, ITC centroid latency) could represent psychotic symptom severity or impairment in cognitive function in patients with SZ.

11.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050641

RESUMEN

With the rapid development of virtual reality (VR) technology and the market growth of social network services (SNS), VR-based SNS have been actively developed, in which 3D avatars interact with each other on behalf of the users. To provide the users with more immersive experiences in a metaverse, facial recognition technologies that can reproduce the user's facial gestures on their personal avatar are required. However, it is generally difficult to employ traditional camera-based facial tracking technology to recognize the facial expressions of VR users because a large portion of the user's face is occluded by a VR head-mounted display (HMD). To address this issue, attempts have been made to recognize users' facial expressions based on facial electromyogram (fEMG) recorded around the eyes. fEMG-based facial expression recognition (FER) technology requires only tiny electrodes that can be readily embedded in the HMD pad that is in contact with the user's facial skin. Additionally, electrodes recording fEMG signals can simultaneously acquire electrooculogram (EOG) signals, which can be used to track the user's eyeball movements and detect eye blinks. In this study, we implemented an fEMG- and EOG-based FER system using ten electrodes arranged around the eyes, assuming a commercial VR HMD device. Our FER system could continuously capture various facial motions, including five different lip motions and two different eyebrow motions, from fEMG signals. Unlike previous fEMG-based FER systems that simply classified discrete expressions, with the proposed FER system, natural facial expressions could be continuously projected on the 3D avatar face using machine-learning-based regression with a new concept named the virtual blend shape weight, making it unnecessary to simultaneously record fEMG and camera images for each user. An EOG-based eye tracking system was also implemented for the detection of eye blinks and eye gaze directions using the same electrodes. These two technologies were simultaneously employed to implement a real-time facial motion capture system, which could successfully replicate the user's facial expressions on a realistic avatar face in real time. To the best of our knowledge, the concurrent use of fEMG and EOG for facial motion capture has not been reported before.


Asunto(s)
Captura de Movimiento , Realidad Virtual , Electrooculografía , Electromiografía , Ojo , Interfaz Usuario-Computador
12.
Alzheimers Res Ther ; 14(1): 170, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371269

RESUMEN

BACKGROUND: Early diagnosis of mild cognitive impairment (MCI) is essential for timely treatment planning. With recent advances in the wearable technology, interest has increasingly shifted toward computer-aided self-diagnosis of MCI using wearable electroencephalography (EEG) devices in daily life. However, no study so far has investigated the optimal electrode configurations for the efficient diagnosis of MCI while considering the design factors of wearable EEG devices. In this study, we aimed to determine the optimal channel configurations of wearable EEG devices for the computer-aided diagnosis of MCI. METHOD: We employed an EEG dataset collected from 21 patients with MCI and 21 healthy control subjects. After evaluating the classification accuracies for all possible electrode configurations for the two-, four-, six-, and eight-electrode conditions using a support vector machine, the optimal electrode configurations that provide the highest diagnostic accuracy were suggested for each electrode condition. RESULTS: The highest classification accuracies of 74.04% ± 4.82, 82.43% ± 6.14, 86.28% ± 2.81, and 86.85% ± 4.97 were achieved for the optimal two-, four-, six-, and eight-electrode configurations, respectively, which demonstrated the possibility of precise machine-learning-based diagnosis of MCI with a limited number of EEG electrodes. Additionally, further simulations with the EEG dataset revealed that the optimal electrode configurations had significantly higher classification accuracies than commercial EEG devices with the same number of electrodes, which suggested the importance of electrode configuration optimization for wearable EEG devices based on clinical EEG datasets. CONCLUSIONS: This study highlighted that the optimization of the electrode configuration, assuming the wearable EEG devices can potentially be utilized for daily life monitoring of MCI, is necessary to enhance the performance and portability.


Asunto(s)
Disfunción Cognitiva , Dispositivos Electrónicos Vestibles , Humanos , Electroencefalografía , Disfunción Cognitiva/diagnóstico , Aprendizaje Automático , Diagnóstico por Computador
13.
Front Neuroinform ; 16: 997068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213545

RESUMEN

In this study, we proposed a new type of hybrid visual stimuli for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), which incorporate various periodic motions into conventional flickering stimuli (FS) or pattern reversal stimuli (PRS). Furthermore, we investigated optimal periodic motions for each FS and PRS to enhance the performance of SSVEP-based BCIs. Periodic motions were implemented by changing the size of the stimulus according to four different temporal functions denoted by none, square, triangular, and sine, yielding a total of eight hybrid visual stimuli. Additionally, we developed the extended version of filter bank canonical correlation analysis (FBCCA), which is a state-of-the-art training-free classification algorithm for SSVEP-based BCIs, to enhance the classification accuracy for PRS-based hybrid visual stimuli. Twenty healthy individuals participated in the SSVEP-based BCI experiment to discriminate four visual stimuli with different frequencies. An average classification accuracy and information transfer rate (ITR) were evaluated to compare the performances of SSVEP-based BCIs for different hybrid visual stimuli. Additionally, the user's visual fatigue for each of the hybrid visual stimuli was also evaluated. As the result, for FS, the highest performances were reported when the periodic motion of the sine waveform was incorporated for all window sizes except for 3 s. For PRS, the periodic motion of the square waveform showed the highest classification accuracies for all tested window sizes. A significant statistical difference in the performance between the two best stimuli was not observed. The averaged fatigue scores were reported to be 5.3 ± 2.05 and 4.05 ± 1.28 for FS with sine-wave periodic motion and PRS with square-wave periodic motion, respectively. Consequently, our results demonstrated that FS with sine-wave periodic motion and PRS with square-wave periodic motion could effectively improve the BCI performances compared to conventional FS and PRS. In addition, thanks to its low visual fatigue, PRS with square-wave periodic motion can be regarded as the most appropriate visual stimulus for the long-term use of SSVEP-based BCIs, particularly for window sizes equal to or larger than 2 s.

14.
J Neural Eng ; 19(5)2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066021

RESUMEN

Objective. Temporal interference stimulation (TIS) has shown the potential as a new method for selective stimulation of deep brain structures in small animal experiments. However, it is challenging to deliver a sufficient temporal interference (TI) current to directly induce an action potential in the deep area of the human brain when electrodes are attached to the scalp because the amount of injection current is generally limited due to safety issues. Thus, we propose a novel method called epidural TIS (eTIS) to address this issue; in this method, the electrodes are attached to the epidural surface under the skull.Approach. We employed finite element method (FEM)-based electric field simulations to demonstrate the feasibility of eTIS. We first optimized the electrode conditions to deliver maximum TI currents to each of the three different targets (anterior hippocampus, subthalamic nucleus, and ventral intermediate nucleus) based on FEM, and compared the stimulation focality between eTIS and transcranial TIS (tTIS). Moreover, we conducted realistic skull-phantom experiments for validating the accuracy of the computational simulation for eTIS.Main results. Our simulation results showed that eTIS has the advantage of avoiding the delivery of TI currents over unwanted neocortical regions compared with tTIS for all three targets. It was shown that the optimized eTIS could induce neural action potentials at each of the three targets when a sufficiently large current equivalent to that for epidural cortical stimulation is injected. Additionally, the simulated results and measured results via the phantom experiments were in good agreement.Significance. We demonstrated the feasibility of eTIS, facilitating more focalized and stronger electrical stimulation of deep brain regions than tTIS, with the relatively less invasive placement of electrodes than conventional deep brain stimulation via computational simulation and realistic skull phantom experiments.


Asunto(s)
Estimulación Encefálica Profunda , Estimulación Transcraneal de Corriente Directa , Animales , Encéfalo/fisiología , Simulación por Computador , Electrodos , Estudios de Factibilidad , Humanos , Cuero Cabelludo , Estimulación Transcraneal de Corriente Directa/métodos
15.
Sci Rep ; 12(1): 13762, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962011

RESUMEN

Working memory (WM) is a complex cognitive function involved in the temporary storage and manipulation of information, which has been one of the target cognitive functions to be restored in neurorehabilitation. WM capacity is known to be proportional to the number of gamma cycles nested in a single theta cycle. Therefore, gamma-band transcranial alternating current stimulation (tACS) should be dependent of the stimulation frequency; however, the results of previous studies that employed 40 Hz tACS have not been consistent. The optimal locations and injection currents of multiple scalp electrodes were determined based on numerical simulations of electric field. Experiments were conducted with 20 healthy participants. The order of three stimulation conditions (40 Hz tACS, 80 Hz tACS, and sham stimulation) were randomized but counterbalanced. Visual hemifield-specific visual WM capacity was assessed using a delayed visual match to the sample task. High gamma tACS significantly increased WM capacity, while low gamma tACS had no significant effect. Notably, 80 Hz tACS increased WM capacity on both the left and right visual hemifields, while previous tACS studies only reported the effects of tACS on contralateral hemifields. This is the first study to investigate the frequency-dependent effect of gamma-band tACS on WM capacity. Our findings also suggest that high gamma tACS might influence not only WM capacity but also communication between interhemispheric cortical regions. It is expected that high gamma tACS could be a promising neurorehabilitation method to enhance higher-order cognitive functions with similar mechanisms.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Cognición , Voluntarios Sanos , Humanos , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
16.
Front Neuroinform ; 16: 811756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571868

RESUMEN

Electroencephalography (EEG)-based diagnosis of psychiatric diseases using machine-learning approaches has made possible the objective diagnosis of various psychiatric diseases. The objective of this study was to improve the performance of a resting-state EEG-based computer-aided diagnosis (CAD) system to diagnose post-traumatic stress disorder (PTSD), by optimizing the frequency bands used to extract EEG features. We used eyes-closed resting-state EEG data recorded from 77 PTSD patients and 58 healthy controls (HC). Source-level power spectrum densities (PSDs) of the resting-state EEG data were extracted from 6 frequency bands (delta, theta, alpha, low-beta, high-beta, and gamma), and the PSD features of each frequency band and their combinations were independently used to discriminate PTSD and HC. The classification performance was evaluated using support vector machine with leave-one-out cross validation. The PSD features extracted from slower-frequency bands (delta and theta) showed significantly higher classification performance than those of relatively higher-frequency bands. The best classification performance was achieved when using delta PSD features (86.61%), which was significantly higher than that reported in a recent study by about 13%. The PSD features selected to obtain better classification performances could be explained from a neurophysiological point of view, demonstrating the promising potential to develop a clinically reliable EEG-based CAD system for PTSD diagnosis.

17.
Front Neuroinform ; 16: 758537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281718

RESUMEN

Brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have recently attracted increasing attention in virtual reality (VR) applications as a promising tool for controlling virtual objects or generating commands in a "hands-free" manner. Video-oculography (VOG) has been frequently used as a tool to improve BCI performance by identifying the gaze location on the screen, however, current VOG devices are generally too expensive to be embedded in practical low-cost VR head-mounted display (HMD) systems. In this study, we proposed a novel calibration-free hybrid BCI system combining steady-state visual-evoked potential (SSVEP)-based BCI and electrooculogram (EOG)-based eye tracking to increase the information transfer rate (ITR) of a nine-target SSVEP-based BCI in VR environment. Experiments were repeated on three different frequency configurations of pattern-reversal checkerboard stimuli arranged in a 3 × 3 matrix. When a user was staring at one of the nine visual stimuli, the column containing the target stimulus was first identified based on the user's horizontal eye movement direction (left, middle, or right) classified using horizontal EOG recorded from a pair of electrodes that can be readily incorporated with any existing VR-HMD systems. Note that the EOG can be recorded using the same amplifier for recording SSVEP, unlike the VOG system. Then, the target visual stimulus was identified among the three visual stimuli vertically arranged in the selected column using the extension of multivariate synchronization index (EMSI) algorithm, one of the widely used SSVEP detection algorithms. In our experiments with 20 participants wearing a commercial VR-HMD system, it was shown that both the accuracy and ITR of the proposed hybrid BCI were significantly increased compared to those of the traditional SSVEP-based BCI in VR environment.

18.
Comput Biol Med ; 143: 105337, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35220075

RESUMEN

Temporal interference stimulation (TIS) has been proved to be effective in stimulating deep brain regions while avoiding the stimulation of neocortical regions in animal experiments. In the traditional TIS, two alternating currents are injected with different frequencies via two electrode pairs attached to the scalp. In the human brain, however, it is difficult to achieve a focal stimulation of deep brain structures due to the high complexity of human brain structures. In this study, we hypothesized that the use of multiple electrode pairs may contribute to the more focalized delivery of temporal interference (TI) currents to the target site in the deep area of the brain. Based on this hypothesis, we proposed a novel multipair TIS method that employs more than two electrode pairs for improved focalized stimulation of the deep brain region (in this study, the head of the right hippocampus). Three realistic finite element models were used to validate the feasibility of the proposed multipair TIS. Additional electrode pairs were sequentially added to the conventional two-electrode pairs with the aim of maximizing the delivery of TI currents to the target while minimizing TI currents in the neocortical regions. The results confirmed that the multipair TIS provides better focalized stimulation than the conventional two-pair TIS for all three head models. It is expected that the proposed multipair TIS can be used to enhance the effectiveness of noninvasive deep brain stimulation.

19.
Int J Numer Method Biomed Eng ; 38(1): e3540, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672120

RESUMEN

Precise estimation of electrical conductivity of the eyes is important for the accurate analysis of electric field distributions in the eyes during ocular iontophoresis. In this study, we estimated the tissue electrical conductivities of a rabbit eye, which has been widely employed for neuro-ophthalmological experiments, through an in vivo experiment for the first time. Electrical potentials were measured at multiple locations on the skin, while weak currents were transmitted into the skin via two surface electrodes attached to the skin around the eye. A finite element model was constructed to calculate the electric potentials at the measurement locations. The conductivity values of different tissues were then estimated using an optimization procedure to minimize the difference between the measured and calculated electric potentials. The accuracy of the estimated tissue conductivity values of the rabbit eye was validated by comparing the measured and calculated electric potential values for different electrode montages. Further multi-physical analyses of iontophoretic drug delivery to the rabbit eye showed a significant influence of the conductivity profile on the resultant particle distribution. Overall, our results provide an important reference for the tissue electrical conductivity values of the rabbit eye, which could be further utilized for designing new medical devices for delivering electric fields to the eyes, such as transorbital and transscleral electrical stimulations.


Asunto(s)
Electricidad , Iontoforesis , Animales , Simulación por Computador , Conductividad Eléctrica , Electrodos , Iontoforesis/métodos , Conejos
20.
Virtual Real ; 26(1): 385-398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34493922

RESUMEN

Recent studies have indicated that facial electromyogram (fEMG)-based facial-expression recognition (FER) systems are promising alternatives to the conventional camera-based FER systems for virtual reality (VR) environments because they are economical, do not depend on the ambient lighting, and can be readily incorporated into existing VR headsets. In our previous study, we applied a Riemannian manifold-based feature extraction approach to fEMG signals recorded around the eyes and demonstrated that 11 facial expressions could be classified with a high accuracy of 85.01%, with only a single training session. However, the performance of the conventional fEMG-based FER system was not high enough to be applied in practical scenarios. In this study, we developed a new method for improving the FER performance by employing linear discriminant analysis (LDA) adaptation with labeled datasets of other users. Our results indicated that the mean classification accuracy could be increased to 89.40% by using the LDA adaptation method (p < .001, Wilcoxon signed-rank test). Additionally, we demonstrated the potential of a user-independent FER system that could classify 11 facial expressions with a classification accuracy of 82.02% without any training sessions. To the best of our knowledge, this was the first study in which the LDA adaptation approach was employed in a cross-subject manner. It is expected that the proposed LDA adaptation approach would be used as an important method to increase the usability of fEMG-based FER systems for social VR applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...